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SUMMARY 

A nonlinear problem for the flow from a uniform channel over a shelf has been solved, using conformal 
mapping and the Hilbert solution of a mixed-boundary-value problem in the upper half-plane. The solution 
in the gravity-affected case was found by numerical iteration; the nongravity solution was used as an initial 
approximation. The numerical solutions obtained have been compared with those of other authors. Favour- 
able agreement with the results of experiments suggest that this method is effective in dealing with flow 
problems strongly influenced by gravity. Some difficulties of the computing, and some checking of the 
solution, are discussed. 

1. Introduction 

Much has been written about the problem of free streamlines. One problem of particular 

interest is the flow from an open uniform (rectangular) channel over a shelf under the influence 

of gravity. The configuration is simple, yet the effect of gravity precludes solutions in closed 

form. 
The problem dates back to Leonardo da Vinci (see Rouse and Ince [6] ). Experimental work 

was carried out in 1936 by Rouse, who found that the depth at the brink Yb, divided by the 

critical depth Yer, was equal to 0.715. SouthweU and Vaisey [9] used a relaxation method, 
obtaining the value 0.705. Hay and Markland [4] used an electrolytic plotting tank, obtaining 

the value 0.676. 
Analytic work, using matched inner and outer asumptotic expansions, was carried out by 

Clarke [2] in 1965, who used the inverse of the Froude number as a small parameter. In 

1979, Keller and Geer [3, 5],  using a similar approach, considered more general flows, finding 

solutions valid for large Froude numbers, but disagreeing with observed values far downstream. 
In 1979, Chow and Han [1] used a hodograph method which agreed with Rouse's experi- 

mental data, especially when the grid size was refined in the numerical treatment. 

In this paper, the Hilbert method is used as a basis for the numerical solution of a two- 

dimensional problem. First, as customary, the physical and complex potential planes are 

mapped onto an auxiliary upper half-plane. Then nonlinear integral equations are found giving 
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the solution of a mixed boundary value problem. Lastly, numerical solutions of those equations 
are obtained by iteration, using the flow in the absence of gravity as a starting solution. 

The problem is formulated in Section 2, in which a set of integral equations is obtained, 
relating only the boundary values. In Section 3, infinite integrals are reduced to f'mite integrals 
by a suitable transformation. Sections 4 treats of the numerical scheme. In Section 5, the 
results are discussed and compared with those of Chow and Han [1], Clarke [2], Southwell 
and Vaisey [9] and the experimental work of Rouse [6]. 

2. Formulation of the problem 

An inviscid, incompressible fluid flows over a horizontal surface until it falls over an edge 
under the influence of gravity. The flow is considered to be two-dimensional, steady and 
irrotational. Far upstream the fluid is of depth h and has a uniform horizontal velocity U, 
and gravity acts vertically downwards, see Fig. 1. 
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Figure 1. The physical plane, Z-plane, for a flow from uniform channel over shelf. 

For convenience, we choose point B to be the origin in the z-plane, the x-axis from left 
to right and the y-axis upwards. The complex potential w(z) = ~(x ,y)  + i~ (x, y)  is an analytic 
function of z within the region of flow, with complex conjugate velocity 

dw(z) 
= u ( x , y ) - i v ( x , y )  = qe -~°. (2.1) 

Along the upper free surface let q l ,  Yl, 01 be the speed of the fluid, the vertical distance 
between a point on the free surface and some reference elevation, and the angle of inclination 
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Figure 2. The normalized complex potential-plane, W'-plane, for a flow from uniform channel over shelf. 
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Figure 3. The upper half-plane, t-plane for a flow from uniform channel over shelf. 
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of the velocity with the horizontal, respectively; similarly for q2, Y2 and 02 along the lower 

free surface. 

Let the dimensionless variables z ', q ', and w '  be: 

, z i  , q i  , w 
= - -  qi = - - ,  w = (2.2) zi  h ' h 41 

w h e r e / =  1,2 and 41 = h U .  

In dimensionless form, the free-surface conditions along the upper and lower free surfaces, 
respectively, are 
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,2 2 
q ,  +~--~(Y'x " 1 ) =  1, 

2 , 
q~ + ~ - ~ ( y : - - a )  -- I, 

(2.3) 

where F is the Froude number defined by 

U 
F - r-v-, • (2.4) 

vgn 

Then (2.1) takes the form 

dw 
~" - de' - q' e-~° (2 .5)  

Let 

Then 

co = log~ = logq '+i ( - -O)  (2.6) 

, f e - ~  , z = dw . (2.7) 

Using the Schwartz-Christoffel transformation we map the region of  flow in the w'-plane 
onto the upper half  of  an auxiliary t-plane, so that the following points correspond (see Figures 

2 and 3) 

B : w '  = 0, t = 0; 

C,D:w'  ~ +0% t = 1; 

A,F:  w' -~--oo, t ~ ~.  

The mapping is 

(2.9) 

where 

1 
w'(t)  = - - - -  log (1 -- t) (2.10) 

0 ~< arg ( 1 -  t) ~< ~. (2 .11)  
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For the second half of the problem, to express ~o as a function of the  single variable t, 
we introduce the Hilbert method for a mixed boundary-value problem in the upper half-plane, 
the general solution of which for an analytic function Q ( t )  in the  upper half-plane, is given by 

n 

1 f~' ImtQ(u)] du + ~ A j t  ~, (2.12) 
Q(t )  = 7r _o. u - t i , o  

where Aj are real constants. 
Now 

Im(6o(t)] = 0, t < 0; 

Re[co(t)] = ½log 1 - - ~ - ~ ( y ; - - 1  

Re[co(t)] = ½log 1- -~- -~(y l - -1  

, 0 > t < 1; ( 2 .13 )  

t > l .  

Thus we know either the imaginary or real part of ~o(t) along the real axis of the t-plane. 
We then introduce an auxiliary function H ( t )  such that Im [Q(t)], where Q ( t )  = co( t ) /H( t ) ,  

is known at all points of the real axis. The general solution for H ( t )  is 

H ( t )  = I-I ( t  - bi)  ±a/2 , (2.14) 
J 

where the bj are real. 
Song [8] has shown that the Fmal solution is independent of the particular choice of H(t). 

We choose 

H ( t )  = - - ix /T ,  0 ~< argt ~< 7r. (2.15) 

Using (2.13) and (2.15), we obtain 

Im IQ(t)] = '  

0 , t > 0  

½ log - ~ ( y i ( t ) - l )  t -~'~, t >  I. 

0 < t > 1 (2.16) 



32 

Applying the upstream condition, Aj = 0; / = 0, 1, 2 , . . . ,  n in (2.12). Thus (2.12) takes 
the form 

1 f** Im[Q(u)] du. (2.17) 
Q(t) = rr -** u - t 

Using (2.6), we obtain 

co(t) _ log q '(t) + i(-- O) 
Q(t) = - 

H(t) H(t) 

= U(t) + i V(t). 

An equivalent form of (2.17) is 

(2.18) 

i f?** V(u) U(t) = -- - - d u ,  
lr u -- t 

V(t) = __-- 1 f?** ___U(u) du. 
,r u - t 

(2.19) 

(2.20) 

Using (2.19) and (2.20), we obtain the following equations 

logq'(t) = --x/-S-t { f~  (u-- t )x / - f f  du +.f? log q'l (u) du / 
(u--t)x/'ff" I '  

= 7r (u --t)x/'U-- du + (u -t)x/'ff" du , 

O,(t) Vet-If '  log q~. (u) f** log q'x (u) ] 
(u -- t) x/if" du ] ,  

t < 0 ;  

0 < t < l  

t > l ;  

(2.21) 

(2.22) 

(2.23) 

f_o log q' (u) du 1 02 (u) du o, 01 (t) du, 
** ( u - t ) V r u  - =fo (u - t ) x , / ' u  + f, ( u - t ) x / - u  

t < 0; (2.24) 

, --V~-- ( ~o log q'(u) f2 logq2(t) = n [J-** ( u - - t ) ~  d u +  

t log q 1 (t) - 
o logq'(u) 1 

o (u) f- o (u) du} 
(u - - t ) x / u  du + (u -- t )x/-u 

0 < t < 1; (2.25) 

0 2 0 )  du+~** O,(u) } 
(u -- t) X/if- (u -- t) ~ dt 

t > 1, (2.26) 
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denotes a singular integral in the sense of Cauchy. where 

The singularities in equations (2.21) to (2.26) may be removed by using the following 
identities 

1 1 1 ,  /1 --Vq-) 
~0 (u -- t) x/~ du = ~ , o g ~  , 0 < t  < 1; (2.27) 

0" 1 1 • [Xff-+l~ 
d +1 (U--t) N/~-du = ~ l o g k - ~ ' ~  J ' t > 1; (2.28) 

o 1 du 
0. (u -- t) x/if- = O, t < O. (2.29) 

Using (2.27) to (2.29), equations (2.21) to (2.26) take the form 

(g- du+ , t < o; (2.30) 

, logq'2_(u)__logq'2(t)du o~ logq; (u)  du/ 

+ l°g q2 ( t - ~ ) l o g  (1 - -x / t -  1 
kl + X/7-]' 0 < t < I; (2.31) 

' logq~(u) dU+fl** logq'l(u)--log.q'l(t)dul 01 (t) = x/TTr f£ (u - t) x/~ (u - t) x/V J 

+ log q'l (t), [x/t- + 1~ 
~ , o g t ~ - - - ~ ]  , , > 1; (2.32) 

fo  logq'(u)--logq'(t) fo' .02 (u) du+ ft ® O,(u) 
- - (u - t) x / -  u du = (u -- t) ~ (u - t) x/if- du, t < O; 

(2.33) 

log q2 ( / ) =  o d u +  
. - -  ( u - t ) v f f  

+ f? (u~f;)X~ du +O' ( t )  l ° g k ~ ] ,  O < t <  1; 

(2.34) 

-•/7-{ o ' 1 O~ (u) 
logq (u) dU+fo ( u - t ) ~ d u  l o g q ' x ( t ) -  f ~.. (u _ t) x/-Z- ~ 
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~ - ~  du + 7r(t)l°g[x/7-+ 1]' t > 1. (2.35) 

3. Solution of the problem 

The coordinates (x', y ' )  of a point on the upper or lower free surface can be obtained using 
(2.7) and (2.10) as follows 

, t e ~°1 (u) 1 
z'l(t) = (Xo + i ) + / :  ql(u)' 7 r ( 1 - -  _u)dU, t > 1. 

Separating real and imaginary parts we get (x'l (t), y'a (t)) for the upper free surface 

l f ~  _sin__._OO,(u___))du y',(t) = 1 +  (1--  u) q 'l (u) ' t > 1; (3.1) 

, l f :  cos0x(u) du, t >  1. (3.2) X'l(t) = Xo + (1 --u)q'l(u) 

For the lower free surface, 

t e~2(u) 1 t .  i 

z'2(t) =,o | q'2(u) Ir(1)--u - - - - - ~  du' 0 < t < 1. 

Separating real and imaginary parts, we get 

' l fot sinO 2 ~)(u)dU , y2(t) = ~- (1- -u)  0 < t ' <  1; (3.3) 

1 jot cos02 (u) 
x'2(t) = ~- ( l ' - - - -~2(u)  du, 0 < t < 1. (3.4) 

The excess pressure coefficient, Cp, at a point on the shelf, using BernouUi's equation, is 

2 
C'p = 1+~-5---q '2, 

where 

P 
cp - ½ p u  

(3.5) 

(3.6) 
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4. Numerical solution 

Integrals over infinite intervals occur in equations (2.30-2.35), but can be eliminated by 
making the following changes of variables: 

(a) When t < 0, we put t = -- cot2"L u = -- cot2/3, and let Q(3') = q ' ( -  cot23'); 
(b) When 0 < t < 1, the variables t and u are left unaltered, but for uniformity we write 

02(0  = q':(t) 02 (t) = 02 (t); 
(c) When t > I, t and u are replaced by lit and l/u, and we put 

o ,t, = 01(1 t 

Equations (2.30-2.35) can then be written as follows: 
(i) Along the lower free surface, (0 < t < I) 

] 1/2 
2 

a2(t) = 1 - ~ - ~  ( Y 2 ( t ) - l )  , (4.1) 

= 7r (u- - t )x /~  du+ (1--ut)x/~-  du 

l + log 02rr (t) log ~ 1 + x/c/-] ' (4.2) 

1 f~ sin @2 (u) du, (4.3) 
Y2 (t) = ~- (1 -- u) Q2 (u) 

1 fot cos®z(U) du; (4.4) 
X2 (t) = ~- (1 -- u) 02 (u) 

(ii) Along the upper free surface: (0 < t < 1) 

2 ] 1/2 
Q,(t) = 1 - F - 5 ( Y I ( t ) - - I )  , 

O~(t) = x/ t -{f~  logQ2(u) 
7r (ut- -  1)vCff - 

d u -  f~ l°gQ~(u)-l°gQl(t)  du 

(4.5) 

Ya(t) = l+--nl f~ 
sinO1 (u) 

du, (4.7) 
u(1 -- u) Q1 (u) 

+ log QI (t) log (4.6) 
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l e t  COSO1 (U) 
X l ( t )  = x o + ~ |  du; (4.8) u ( l ~ a l ( u )  7T ~O 

(iii) Along the solid boundary: (0 < 3' < Ir/2) 

:: / log Q(3') = lr (1 + u tan 23') ~ du + (u + tan 23') ~ du , (4.9) 

2 
Cp = 1 + ~-~ - Q2(3'); (4.10) 

(iv) For numerical checking: 

' 02 (u) 
2 fo/2 l°gQ([J)-l°gQ(3")sec2[3d[3+/£(tan2~_ tan23') (1 + u tan~3')x/h -'du 

f~ O1 (u) Ir (4.11) + ( u + t a n  2 3 ' ) ~ d u  = 0, 0 < 3' < ~ - .  

Equations (4.1-4.3) and (4.5-4.7) constitute a set of nonlinear integral equations in QI, 
Q2, O1, 02, Y~ and 1:2. Numerical solutions were obtained using an iterative method as 
follows: 

(i) Following Southwell and Vaisey [9] the gravity-free solution 

y~O) = 1, y~O) = 0 

was taken as an initial approximation. 
(ii) The values of y~0) and y(o) were substituted in (4.1) and (4.5) yielding a(O) and 0(2 °), 

which in turn were substituted in (4.2) and (4.6) yielding Or1 °) and ®~o). 
(iii) The values of Oct °), Q~O), o(2o) and Q~O) were substituted in (4.3) and (4.7) yielding 

y~O and y~l), completing the first cycle of iteration. 
(iv) The second (and subsequent) cycles were carried out by returning to (ii) above, and 

increasing the superscripts by one. 
Iteration was continued until successive approximations differed by an appropriately small 

amount, usually from 5 x 10 -s to 5 x 10 -7. After each iteration, equation (4.11) was used 
as a numerical check. 

When the final values of QI, Q2, Ol,  02,  Yl and I:2 had been obtained, equations (4.4) 
and (4.8) were used to determine the values of X~ and X2 ; and equations (4.9) and (4.10) to 
determine the value of Q and the pressure coefficient Cp along the bottom of the channel. 

It was found that the iteration process began to converge after two or three cycles. It usually 
required four cycles to give the lower free surface to three decimal places and the upper free 
surface to two decimal places; and seven cycles to give five and four decimal places respectively. 
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5. Discussion and comparisons 

The shapes of  the free surfaces are shown in Figure 4 for a number of different values of the 

Froude number, and the values of the pressure coefficient G for various values o f F  are shown 

in Figure 5. 
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Figure 4. Waterfall profile for subcritical, critical, and supercritical approaching flows. 
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Figure 5. Cp along the flat shelf for different values of  froude number. 
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Present ca lcu la t ions  (H i l be r t ' s  method) Chow and Han (Hodograph method) 

. . . . . . .  Southmell and Vaisey (Relaxat ion method) . . . Rouse (Experiment) 
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Figure 6. Comparison with experimental data and other results. 

A comparison with the experimental results of  Rouse [6] ; the hodograph method employed by 

Chow and Han [1] ;and the relaxation solution of  Southwell and Vaisey [9] is shown in Figure 

6, when the Froude number is equal to unity. It appears that the numerical results of  the 

present paper agree closely with Rouse's experimental data. 

~ P r e s e n t  ca lcu la t ions  (H i l be r t ' s  
method) 

. . . .  Clarke ( Inner  Solut ion) 

~ _ _ _  Clarke (Outer so lu t ion)  
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0-2S- 

,o 
"7 .7 '7 , "T J 

-02~ 

-080- 

F = 2¢T0- 

L}~ I _ _ _  

Figure 7. Comparison with perturbation method for F = x/2-0-. 
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As mentioned earlier, Clark [2] obtained solutions of  this problem for large Froude num- 

bers. A comparison with the numerical results of  the present paper is shown in Figure 7 for 

F = x / 7 0 .  It appears that there is close agreement near the crest, but further downstream 

Clarke's solution yields a thinner jet. 
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